Near-Optimal Distributed Shortest Paths and Transshipment

Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen

Shortest Transshipment Problem (STP)

Given:

- undirected graph G = (V, A), n = |V|
- edge weights $w \in \mathbb{N}^m$
- node demands $b \in \mathbb{Z}^n$

Goal: *Ship goods* from negative demand nodes to positive demand nodes, minimizing the cost.

 $\min\{\|Wx\|_1 : Ax = b\} = \max\{b^Ty : \|W^{-1}A^Ty\|_{\infty} \le 1\}$

Gradient Descent Approach

Idea: Solve differentiable variant of Reciprocal LP

$$\min\{\|W^{-1}A^T\pi\|_{\infty}: b^T\pi = 1\}$$

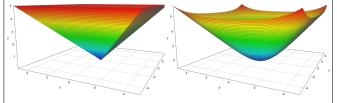
using a *potential function* $\Phi_{\beta}(\pi) := \operatorname{lse}_{\beta}(W^{-1}A^{T}\pi).$

 $\begin{array}{l} \hline \textbf{Algorithm: grad_desc} \\ \hline \pi \leftarrow \alpha \text{-approx., } \beta \text{ s.t. } \Phi_{\beta}(\pi) \in [\frac{4 \ln(2m)}{\varepsilon \beta}, \frac{5 \ln(2m)}{\varepsilon \beta}] \\ \hline \textbf{repeat} \\ & \left[\begin{array}{c} \tilde{b} \leftarrow P^T \nabla \Phi_{\beta}(\pi), \text{ where } P \leftarrow I - \pi b^T \\ \tilde{h} \leftarrow \alpha \text{-approx. of } \max\{\tilde{b}^T h: \|W^{-1}A^T h\|_{\infty} \leq 1\} \\ & \delta \leftarrow \frac{\tilde{b}^T \tilde{h}}{\|W^{-1}A^T P \tilde{h}\|_{\infty}} \\ & \text{ if } \delta > \frac{\varepsilon}{8\alpha} \text{ then } \pi \leftarrow \pi - \frac{\delta}{2\beta \|W^{-1}A^T P \tilde{h}\|_{\infty}} P \tilde{h}. \\ \hline \textbf{until } \delta \leq \frac{\varepsilon}{8\alpha} \end{array}$

Here $\ensuremath{\operatorname{lse}}_\beta(x)$ is the so-called log-sum-exp function

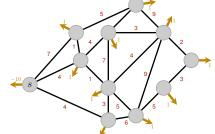
$$\operatorname{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{i \in [d]} \exp(\beta x_i) + \exp(-\beta x_i) \right)$$

that approx. the $\infty\text{-norm.}$ A 2-dim. example, for $\beta=1\text{:}$



Single-Source-Shortest-Path (SSSP)

Compute *shortest path* from *s* to all nodes (SSSP).



SSSP is the special case of STP with $b = 1 - n 1_s$.

Results

Theorem 1: Given α -oracle for STP, one can compute solutions x, y for STP s.t. $\|Wx\|_1 \le (1 + \varepsilon)b^T y$ with $\tilde{O}(\varepsilon^{-3}\alpha^2)$ oracle calls.

Theorem 2: Can compute solution y for SSSP s.t. $\frac{y_v^*}{1+\varepsilon} \le y_v \le y_v^*$ for each v with $\text{polylog}(n, ||w||_{\infty})$ calls to grad_desc.

Implementing this framework with an oracle that computes an **optimal solution on an** α **-spanner** of *G* yields the following results.

Results in Distributed/Streaming Models:

- 1. *Broadcast congest:* $(1 + \epsilon)$ -approx. SSSP in $\tilde{O}(\epsilon^{-O(1)}(\sqrt{n} + D))$ rounds
- 2. **Broadcast congested clique:** $(1 + \epsilon)$ -approx. STP and SSSP in $\tilde{O}(\epsilon^{-O(1)})$ rounds.
- 3. *Multipass streaming:* $(1 + \epsilon)$ -approx. STP and SSSP in $\tilde{O}(n)$ space and $\tilde{O}(\epsilon^{-O(1)})$ passes.

Note that the upper bound for the **Broadcast Congest model** is the first to **match the well-known lower bound** of $\Omega(\sqrt{n}/\log n + D)$ up to logarithmic factors.

References

[BKKL16] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models. 2016.

